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Abstract

The unsteady flow of the Green–Rivlin fluids in straight tubes of arbitrary cross-section driven by a pulsating

pressure gradient is investigated. The non-linear constitutive structure defined by a series of nested integrals over semi-

infinite time domains is perturbed simultaneously with the boundary of the base flow through a novel approach to

domain mapping. The dominant primary component of the flow, the longitudinal field, and the much weaker trans-

versal field arise at the first and the second orders of the analysis, respectively. The secondary field is driven by first-

order terms stemming from the linearly viscoelastic longitudinal flow at the first order. The domain mapping technique

employed yields a continuous spectrum of unconventional closed cross-sectional shapes. We present longitudinal

velocity profiles and transversal time-averaged, mean secondary flow streamline patterns for a specific fluid and for

representative cross-sectional shapes in the spectrum the triangular, square and hexagonal shapes.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The behavior of non-Newtonian liquids when subjected to a periodic forcing oscillating about a non-zero

mean in circular pipes has been the subject of numerous investigations starting with Barnes et al. (1971)

because it arises often in applications, and due to its inherent fundamental appeal as a tool to test the pre-

dictive power of constitutive equations and as a potential rheometer. Predicting the flow behavior in par-

ticular when the driving pressure gradient pulsates with large amplitudes remains a challenge. The interest in

this flow class with fluids which exhibit elasticity finds more emphasis because of the enhancement effect, that

is a net increase in the mean flow rate over that corresponding to the steady flow driven by the mean pressure

gradient of the pulsating gradient driving the quasi-unsteady flow. This net increase can be substantial de-
pending on the flow parameters as demonstrated by Barnes et al. (1971). The point should be made that

quantitative prediction of the flow enhancement with viscoelastic liquids remains elusive for the popular

differential type constitutive equations in use at this time. Single integral models with strain-rate memory type

kernels seem to predict some experimental facts better in the context of time-periodic flows. In this vein a
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nested integral series representation over semi-infinite time domains for the extra-stress functional of a fading

memory viscoelastic fluid has been introduced and used by Siginer (1991a) and Siginer and Valenzuela-

Rend�oon (1993) in a series of papers to study this phenomena in circular pipes with better success than dif-

ferential type and single integral constitutive equations with strain or strain-rate memory type kernels.
So far all the work done in this area is related to flow in circular pipes. In a series of papers (Letelier et al.,

2002; Siginer and Letelier, 2002), the authors studied for the first time pulsating pressure gradient driven

flow in pipes with cross-sectional shapes other than circular using the nested integral series representation

over semi-infinite time domains for the extra-stress functional. The primary longitudinal flow is studied in

depth in Letelier et al. (2002) and the secondary flow field is investigated in Siginer and Letelier (2002). It is

well known that deviations from the circular shape do not alter the null transversal field in laminar flow for

linear fluids although weak secondary flow structures have been observed in the turbulent flow of New-

tonian fluids in non-circular tubes early in the century by Nikuradse (1930). In the case of non-linear fluids
even slight deviations from circular shape give rise to secondary flows the strength of which albeit weak

increases with increasing deviations from the circular shape. Even though the magnitude of the secondary

flows does not exceed at most 5% of the magnitude of the primary longitudinal flow secondary flows have

been shown to be the dominant mechanism behind the experimentally observed heat transfer enhancement

phenomena with viscoelastic fluids in steady laminar flow (Hartnett and Kostic, 1985, 1989; Gao and

Hartnett, 1993, 1996). There is also experimental evidence that secondary flows practically do not require

an increase in the energy input to drive the flow, that is an increase of the steady pressure gradient. Heat

transfer characteristics of viscoelastic fluids in steady laminar flow in rectangular straight tubes is still very
much an open question let alone heat transfer characteristics both in steady and quasi-unsteady flow in

tubes other than rectangular such as triangular, hexagonal, etc. To our knowledge even the heat transfer

phenomena in steady laminar flow of linear fluids in tubes of cross-sectional shape other than rectangular

has not been investigated with the obvious exception of round pipes. When it comes to viscoelastic fluids

the field is almost virgin territority.

A mathematically rigorous and general theorem concerning the existence of secondary flows in straight

tubes of arbitrary cross-section was proved by Fosdick and Serrin (1973). They showed that unless the

cross-section of the tube is circular or an annulus between two concentric circles a simple fluid cannot
undergo a steady rectilinear motion in a straight tube whose cross-section is a bounded and connected set

assuming that the material functions satisfy appropriate analyticity and monotonicity conditions and that

they are not proportional for small shear rates. The conditions for steady rectilinear flow of a viscoelastic

fluid in tubes of arbitrary cross-section were also previously deduced by Oldroyd (1965). Rectilinear flow

can occur in a straight tube of arbitrary cross-section if any one of the following three conditions are met; if

the second normal stress difference is zero or both the apparent viscosity and the second normal stress

coefficient are constant or if they are proportional. In the latter case the magnitude of the departure of the

second normal stress coefficient from a constant multiple of the apparent shear viscosity determines the
strength of the secondary flow. Thus fluids which obey the upper convected Maxwell or the Oldroyd––B

models and some versions of the Phan-Thien–Tanner model will not develop secondary flows and will

display rectilinear particle pathlines when flowing in tubes of cross-section other than circular. If none of

the above conditions is met a secondary flow occurs in the transversal plane which causes the particles to

follow a spiraling path down the tube. In the case of Maxwell and Oldroyd––B constitutive structures the

second normal stress difference N2ðj2Þ is zero. Some versions of the Phan-Thien–Tanner model produce a

constant second normal stress coefficient W2ðjÞ ¼ N2ðj2Þ=j2 and constant apparent viscosity g0ðjÞ, other
versions predict W2ðj2Þ ¼ mg0ðjÞ where m is a coefficient of proportionality.

This paper summarizes the recent efforts of the authors to contribute to the prediction of the primary

and secondary flows of viscoelastic fluids in conduits of arbitrary shape in quasi-unsteady flow driven by a

pulsating pressure gradient. It also puts previous results (Letelier et al., 2002; Siginer and Letelier, 2002) in a

more general perspective developed through an ongoing analysis of Phan-Thien–Tanner fluids under
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comparable dynamic conditions. Some general kinematic flow structures, common to flows of fluids with

different viscoelastic constitutive equations, are presented herein (Letelier et al., 2001). Forthcoming papers

will continue this line of investigation for steady flow when the fluid is characterized by differential type

constitutive equations, in particular by Phan-Thien–Tanner type of equations, and will look at the heat
transfer issues with non-linear fluids in tubes of non-circular shape.
2. Mathematical analysis

The field equations and the boundary conditions read as
q
Du

Dt
¼ �r/þr � S; r � u ¼ 0 in D; D ¼ ðr; h; zÞ : 0

�
6 r6 r j

oD
; 06 h < 2p;�1 < z < 1

�
;

u r j
oD
; h; z; t

� �
¼ 0; uð0; h; z; tÞ < 1:

ð1Þ

The forcing function and the velocity field satisfy
/;z ¼ �eðP þ k sinxtÞ; e < 1; u ¼ uer þ veh þ wez;

uð�eÞ ¼ uðeÞ; vð�eÞ ¼ vð�eÞ; wð�eÞ ¼ �wð�eÞ:
ð2Þ
D is the flow domain with the arbitrarily curved boundary oD, and / and S represent the pulsating

modified pressure field and the extra-stress tensor, respectively. The integral representation of the latter on

the particle X of the fading memory fluid at the present time t,
S ¼ Tþ /1 ¼ F1
s¼0½GðX; sÞ�; s ¼ t � s;
where s represents the past time is based on the history G(X) of the strain on the particle and comes out

of the Fr�eechet expansion of the extra-stress functional F in terms of the small parameter e under the

assumptions of isotropy, incompressibility and small strains,
SðX; t; eÞ ¼ eSð1Þ þ e2Sð2Þ þOðe3Þ: ð3Þ

The remaining variables are expanded into power series in e pivoted around the rest state e ¼ 0,
uðX; t; eÞ ¼ euð1ÞðX; tÞ þ e2uð2ÞðX; tÞ þOðe3Þ; ð4Þ

/ðX; t; eÞ ¼ e/ð1ÞðX; tÞ þ e2/ð2ÞðX; tÞ þOðe3Þ; ð5Þ

where n!ð�ÞðnÞ refers to the nth-order partial derivative with respect to the perturbation parameter e eva-

luated at e ¼ 0,
n!ð�ÞðnÞ ¼ onð�Þ
oen

����
e¼0

:

The integral forms of the Fr�eechet stresses SðiÞ are developed and given elsewhere (Siginer, 1991a,b, 1992)

up to and including third order. The first and second order Fr�eechet stresses read,
Sð1Þ ¼
Z 1

0

GðsÞAð1Þ
1 ðt � sÞds; ð6Þ

Sð2Þ ¼
Z 1

0

GðsÞAð2Þ
1 ðt � sÞdsþ

Z 1

0

GðsÞL1ðt � sÞdsþ
Z 1

0

Z 1

0

cðs1; s2ÞAð1Þ
1 ðt � s1ÞAð1Þ

1 ðt � s2Þds1 ds2;

ð7Þ
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A
ðjÞ
1 ðt � sÞ ¼ 2DbuðjÞðX; t � sÞc; j ¼ 1; 2;
where GðsÞ and cðs1; s2Þ refer to the shear relaxation and quadratic shear relaxation moduli, respectively,

and the first Rivlin–Ericksen kinematic tensor A1 and its derivatives are defined in terms of the rate

of deformation tensor D and its derivatives with respect to e evaluated at e ¼ 0,
A1 ¼ ruþruT; A
ð1Þ
1 ðt � sÞ ¼ A1buð1Þðx; t � sÞc;

AðjÞðt � sÞ ¼ 2DbuðjÞðx; t � sÞc; j ¼ 1; 2:
ð8Þ
The tensor L, is a function of A
ðjÞ
1 ðt � sÞ and of the history integral n� of the path of the particle X (Siginer,

1991a,b),
L1ðt � sÞ ¼ n� � rA
ð1Þ
1 þ A

ð1Þ
1 rn� þ ðAð1Þ

1 rn�ÞT; ð9Þ

n� ¼
Z s

t
uð1ÞðX; s0Þds0; t > s: ð10Þ
2.1. Longitudinal field

At the first order the Stokes problem is derived using (1)–(6) and reads as,
quð1Þ;t ¼ �r/ð1Þ þ r � Sð1Þ; r � uð1Þ ¼ 0; /ð1Þ
;z ¼ �ðP þ k sinxtÞ; uð1Þ j

oD0

¼ 0; uð1Þð0; zÞ < 1:

ð11Þ
The first order velocity is unidirectional and is of the following form,
uð1Þ ¼ wð1Þðr; h; tÞez:
The transversal velocity components u and v are of order Oðe2Þ. The mass conservation is identically

satisfied at this order, and the linear momentum balance (11)1 yields using (6) and (8),
qw;t ¼ �ðP þ k sinxtÞ þ
Z 1

0

GðsÞr2wðr; h; t � sÞds at OðeÞ;

r2 ¼ o2

or2
þ 1

r
o

or
þ 1

r2
o2

oh2
;

ð12Þ
to be solved subject to,
wð1Þ j
oD0

¼ 0; wð0; z; tÞ < 1:
2.2. The transversal field

The second order problem is derived through the use of (2)–(5) and (1) and is defined by
quð2Þ;t ¼ �r/ð2Þ þ r � Sð2Þ; r � uð2Þ ¼ 0 in D0;

uð2Þ j
oD0

¼ 0; uð2Þð0; h; z; tÞ < 1:
ð13Þ
Both the longitudinal and transversal fields at the first and second orders, respectively, are defined and
are to be solved in the rest state domain D0 which is geometrically the same as the physical flow domain D.



Fig. 1. Coordinate system in a straight tube of arbitrary cross-sections.
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Both problems are set in the rest state domain as a mathematical requirement because the rest state as well

as the constitutive structure are perturbed through the parameter e in the driving pressure gradient. The

basic system is described in Fig. 1.
2.3. Domain mapping

We further develop and use ideas due to Letelier and Leutheusser (1985) and Letelier et al. (1995), and

postulate that the structure of the primary longitudinal flow in the deformed domain D at OðeÞ is given by
w ¼ ðR2 � r2 þ e1rn sin nhÞbw0ðr; h; tÞ þ e1H1ðr; h; tÞ þ e21H2ðr; h; tÞ þOðe31Þc; e1 < 1; ð14Þ
where w0ðr; h; tÞ refers to the longitudinal velocity field of the base flow, that is the velocity field in
the unmapped domain D0 corresponding to flow in a tube with a known contour oD0. The contour oD of

the new conduit is determined by the numerical values of the parameters ðe1; nÞ. Large deformations of the

contour oD0 of the base flow are allowed by this mapping technique. The base flow w0 in the conduit with

the selected contour oD0 is recovered as e1 ! 0, and the values of 0 < e1 < 1, n > 1 give rise to a spectrum

of tube contours. As an example the set e1 ¼ 0:22, n ¼ 4 corresponds to a square. The factored term in (14)

is set to zero to satisfy the no-slip condition. The equation thus obtained is called the shape factor and

generates a rich spectrum of shapes by varying ðe1; nÞ.
As rn sin nh used in the representation (14) of the longitudinal velocity is part of the infinite set of

homogeneous solutions of the Laplace equation one could as well have used rn cos nh or rnðcos nhþ sin nhÞ.
Therefore the representation (14) for the longitudinal velocity written in terms of sin nh is also valid with

sin nh replaced with cos nh or ðcos nhþ sin nhÞ. It is also important to note that the parameter e1 in (14) is

not dimensionless. Its dimension depends on the integer number n which in turn affects the dimension of the

functions Hi, i ¼ 1; 2, ½e1� ¼ L2�n, ½H1� ¼ Ln�3T�1, ½H2� ¼ L2n�5T�1 where L and T represent length and time,

respectively.
2.4. Solution for the base flow w0

A tube with circular contour oD0 is selected as the base flow. We note that the constitutive structure is

perturbed through the parameter e and the contour oD0 through e1 when n is selected. Thus at Oðe; e01Þ, that
is in the circular tube, the problem reduces to that of solving (12) with wð1Þ ! w0ðR2 � r2Þ subject to

ðR2 � r2Þw0 j
oD0

¼ 0. The solution is obtained in Siginer (1991a) by the second author and will be reproduced
here,
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w0ðr; tÞ ¼
P
4l

þ 2

R2 � r2
Re ½AðrÞeixt�; AðrÞ ¼ k

2qx
I0ðKrÞ
I0ðKRÞ

�
� 1

�
;

K2 ¼ iqxR1
0

GðsÞe�ixs ds
¼ iqx

g�
;

ð15Þ
where g� and I0 represent the complex viscosity and the modified Bessel function of order zero, respectively.

The complex viscosity is the material parameter which determines the stresses that are linear in the shear

rate, and it has components g0 and g00 corresponding to the linearly viscous and elastic properties of the

liquid, respectively.

2.5. Solution for the primary longitudinal flow at the lowest order in e

Expanding (14) in powers of e1 gives,
w ¼ w0ðR2 � r2Þ þ
X1
j¼1

ej1wj; w1 ¼ w0rn sin nhþ ðR2 � r2ÞH1;

wj ¼ Hj�1rn sin nhþ ðR2 � r2ÞHj:
Using (12) we obtain the consecutive problems satisfied by wj,
qwj;t ¼
Z 1

0

GðsÞr2wjðr; h; t � sÞds; j ¼ 1; . . . ;1: ð16Þ
It is worthwhile to note that each component wj is not zero on the boundary oD0 but wð1Þ j
oD0

¼ 0 as the

no-slip boundary condition is already satisfied by the shape factor.

We structure the solution at order Oðe; e1Þ as
w1 ¼ f½BðrÞeixt þ BðrÞe�ixt� þ Crng sin nh:
The solution is developed in Letelier et al. (2002) and the details will not be reproduced here.
BðrÞ ¼ KInðKrÞ; ðK;KÞ 2 C;
where K is defined in (15) and In represents the complex modified Bessel function of order n and the complex

constant K is computed as
K ¼ K1 þ iK2;

Kj ¼
Rn½pjðRÞSn1ðRÞ � ð�1Þjp3�jðRÞSn2ðRÞ�

S2
n1
ðRÞ þ S2

n2
ðRÞ ; j ¼ 1; 2;

InðKRÞ ¼ Sn1ðRÞ þ iSn2ðRÞ;

pjðRÞ ¼ lim
r!R

ajðrÞ
R2 � r2

;

AðrÞ ¼ a1 þ ia2;
where AðrÞ is defined in (15). At order Oðe; e21Þ,
w2 ¼ f ðr; tÞrn sin2 nhþ ðR2 � r2ÞH2:
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We postulate
w2 ¼ B21ðrÞeixt þ B21 e
�ixt þ ½B22ðrÞeixt þ B22ðrÞe�ixt� cos 2nh
and derive the problems which define B21 and B22 through substitution in (16),
L2B21 ¼ 0; L2

�
� 4n2

r2

�
B22 ¼ 0; L2 ¼ o2

or2
þ 1

r
2

or
� K2;
the solutions to which are developed in Letelier et al. (2002) and read as
B2jðrÞ ¼ K2jI2nðj�1ÞðKrÞ; K2j 2 C; j ¼ 1; 2:
2.6. Solution for the transversal field at the lowest order in e

The transversal field arises at order Oðe2Þ. The details of the derivation are developed in Siginer and

Letelier (2002) and only the summary will be given here. The driving terms at this order are both time
independent and time dependent of the type ekixt, k ¼ 1; 2. Therefore, the transversal field has a time-

averaged mean part represented by a time-averaged stream function wmðr; hÞ and components wkðr; hÞ
oscillating with frequencies x and 2x and has the form,
uð2Þ ¼ curlwðr; h; tÞez;
wðr; h; tÞ ¼ wmðr; hÞ þ bwkðr; hÞekixt þ Conj:c; k ¼ 1; 2:

ð17Þ
The mathematical problem which defines the mean field wmðr; hÞ is developed using (7), (13) and (17) and

reads as
�lrr4wm ¼
Z 1

0

GðsÞf½r � L1�r;h � ½rr � L1�h;rgm dsþ
Z 1

0

Z 1

0

cðs1; s2Þf½r � ðA1ðs1ÞA1ðs2ÞÞ�r;h

� ½rr � ðA1ðs1ÞA1ðs2ÞÞ�h;rgm ds1 ds2;
where fgm refers to the time-averaged terms. The tensor L1 and the tensorial product A1ðs1ÞA1ðs2Þ are

computed using (8) and (9) and are given as
L1ðt � sÞ ¼ 2w;rðt � sÞn;rer � er þ
2

r2
w;hðt � sÞn;heh � eh þ

1

r
½w;rðt � sÞn;h þ w;hðt � sÞn;r�½er � eh þ eh � er�;

A
ð1Þ
1 ðt � s1ÞAð1Þ

1 ðt � s2Þ ¼ w;rðs1Þw;rðs2Þer � er þ
1

r2
w;hðs1Þw;hðs2Þeh � eh

þ 1

r
½w;rðs1Þw;hðs2Þer � eh þ w;rðs2Þw;hðs1Þeh � er�;
together with n computed through (10),
n� ¼ nez ¼ ez:
We postulate that the mean stream function wm is structured as
wm ¼ H 2ðr; hÞf ðr; hÞ þ w0; ð18Þ

where w0 is an arbitrary constant which may be set to zero for convenience and Hðr; hÞ is the shape factor,
Hðr; hÞ ¼ R2 � r2 þ e1rn sin nh:
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The no-slip boundary condition is met by the above definition of wm, and the unknown function f ðr; hÞ is
assumed to have the following form,
f ðr; hÞ ¼
X1
j¼1

ej1fjðr; hÞ:
Expanding the mean stream function wm in a series we obtain,
wmðr; hÞ ¼ e1w1 þ e21w2 þOðe31Þ;
wmðr; hÞ ¼ e1ðR2 � r2Þ2f1ðr; hÞ þ e21½ðR2 � r2Þ2f2ðr; hÞ þ 2ðR2 � r2Þrn sin nhf1ðr; hÞ� þOðe31Þ:
Then the secondary flow is defined at the leading orders in e1 by
Oðe2; e1Þ : rr4w1 ¼ rr4bðR2 � r2Þ2f1ðr; hÞc;

Oðe2; e21Þ : rr4w2 ¼ rr4bðR2 � r2Þ2f2ðr; hÞ þ 2ðR2 � r2Þrn sin nhf1ðr; hÞc:

The full solution of the last two problems are given in Siginer and Letelier (2002) and the reader is

referred to that work for details.
3. Discussion

Explicit computation of the longitudinal and transversal flow fields at the lowest orders using the

equations developed depends on defining the material functions entering the field equations. The primary

field in the longitudinal direction is framed in terms of the shear relaxation modulus GðsÞ related to the

complex viscosity g�
g� ¼ g0 � ig00 ¼
Z 1

0

GðsÞe�ixs ds:
We use an expression for GðsÞ previously introduced by Siginer (1991a,b)
GðsÞ ¼ kkl

hkCðkÞ
sk�1 e�ks=h; h ¼ � a1

l
; 0 < k < 1;
where a1 an l are the first Rivlin–Ericksen constant––a material parameter––and the zero shear viscosity,

and h and k can be thought of as the natural time of the fluid and an adjustable parameter to bring the curve

represented by the above definition of GðsÞ for a given fluid (a1 and l0 consequently are fixed and deter-

mined from separate experiments for the fluid under consideration) to better agreement with experimental

data. This explicit representation of GðsÞ meets the conditions for the stability of the rest state, that is
GðsÞ > 0, G0ðsÞ < 0, G00ðsÞ > 0 and GðsÞ ! 0 as s ! 1 which implies that the stress vanishes when the fluid

is at rest. The first Rivlin–Ericksen coefficient is related to the first normal stress difference through,
a1 ¼ �
Z 1

0

sGðsÞds ¼ � lim
j!0

Tzz � Trr
2j2

¼ � lim
j!0

N1ðj2Þ
2j2

; N1ðj2Þ > 0; ð19Þ
where Tzz, Trr and j represent the stress components in the longitudinal and radial directions and the shear

rate, respectively. Thus the definition of the natural time h of the fluid in terms of a1 and a characteristic

viscosity makes sense and is physically meaningful. In Figs. 2 and 3 we present the longitudinal field for a

commercially available specific fluid and for large amplitude forcing. If the analysis is conducted up to and
including fourth order in e, then the present analysis is applicable to solutions of high-molecular weight

polymers such as polyacrylamide in water.



Fig. 2. Dimensionless axial velocity contours in a straight pipe of very approximately square cross-sectional shape ðn ¼ 4; e1 ¼ 0:22Þ in
the case of the large amplitude oscillation of the pressure gradient for increasingly elastic liquids starting with the linear Newtonian

fluid ðj ¼ 0Þ. The amplitude k of the pressure wave is equal to the mean gradient P , k=P ¼ 1. The non-dimensional velocity w� and time

t� are defined as w� ¼ w=W0 and t� ¼ xt where W0 ¼ PR2=4l, and other data is taken as x ¼ 10 rad/s, q ¼ 0:89 g/cm3, l ¼ 200 Poise,

a1 ¼ �50 g/cm, R ¼ 3 cm. In the following D defines the dimensionless increment between axial velocity contours: (a) j ¼ 0:0,

t� ¼ 0:48p, D ¼ 2� 10�4; (b) j ¼ 0:01, t� ¼ 0:365p, D ¼ 35� 10�5; (c) j ¼ 0:5, t� ¼ 1:907p, D ¼ 10�3; (d) j ¼ 0:5, t� ¼ 5p=4, D ¼ 0:2;

(e) j ¼ 0:5, t� ¼ p=4, D ¼ 0:07; (f) j ¼ 1:0, t� ¼ 0:455p, D ¼ 36� 10�4.
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In Fig. 3 longitudinal velocity profiles in both the shorter and longer cross-section semi-axes are shown

for times associated to Fig. 1a and b.

For the computation of the transversal flows an explicit definition of the quadratic shear relaxation
modulus cðs1; s2Þ is required in addition to the definition of the shear relaxation modulus GðsÞ. We note that



Fig. 3. Dimensionless velocity profiles in a square pipe ðn ¼ 4; e1 ¼ 0:22Þ along the diagonal and the axis of the square in cases (a) and

(b) in Fig. 1. There is one-to-one correspondence between Figs. 1 and 2. Thus case (a) in Fig. 1 corresponds to case (a) in Fig. 2. Length

scale is R. Non-dimensional velocity is the same as in Fig. 2. The velocity profiles with the larger ordinate are obviously along the

diagonal.
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the quadratic shear relaxation modulus is related to both the first and second normal stress differences

N1ðj2Þ and N2ðj2Þ, respectively, through the second Rivlin–Ericksen constant a2,
Z 1

0

Z 1

0

cðs1; s2Þds1 ds2 ¼ �a2 ¼ lim
j!0

N1ðj2Þ þ N2ðj2Þ
j2

; N2ðj2Þ ¼ Trr � Thh: ð20Þ
The relationships (19) and (20) hold independently of the explicit representations adopted for GðsÞ and
cðs1; s2Þ. In addition to these two material functions the driving terms in the field equations for the sec-

ondary flow depend on âa2ðxÞ the counterpart of a2 for oscillatory motions,
lim
x!0

âa2ðxÞ ¼ a2; âa2ðxÞ ¼
Z 1

0

Z 1

0

cðs1; s2Þ cosxðs1; s2Þds1 ds2:
The second normal stress difference for oscillatory flows is given by
N̂N2ðxÞ ¼ �g00ðxÞ=xþ âa2ðxÞ:
This expression collapses on to the second normal stress function N2ðj2Þ for viscometric flows as x ! 0.
lim
x!0

N̂N2ðxÞ ¼ lim
j!0

N2ðj2Þ
j2

¼ 2a1 þ a2:
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We adopt an expression previously used by Siginer (1991a,b), for cðs1; s2Þ
Fig. 4.

of the

data an

jWmjma
cðs1; s2Þ ¼ a2
XN
i

C1il2i e
�1iðs1þs2Þ;

XN
i

C1i ¼ 1; ð21Þ
which represents cðs1; s2Þ as a series in terms of the second Rivlin–Ericksen constant a2 > 0 and a discrete

spectrum of relaxation times l�1
i , i ¼ 1; . . . ;N . This choice for the representation of cðs1; s2Þ satisfies (20).

We compute,
âa2ðxÞ ¼ 2a2
XN
j

C1jl2j
ðl2j � x2Þ
ðl2j þ x2Þ :
It has been determined experimentally that, for the same commercially available fluid whose properties

we use in this paper to obtain specific examples of the longitudinal velocity profiles and mean transversal
streamline patterns, in small amplitude oscillatory rod climbing experiments a good fit with experimental

data is obtained when x < 20 rad/s if N ¼ 2 and
l1 ¼ 3:8079 s�1; l2 ¼ 17:5214 s�1;

c1 ¼ 0:9735; c2 ¼ 1� 0:935:
We adopt the hypothesis that (21) represents the behavior of this specific fluid in all periodic motions

which perturb the rest state when x < 20 rad/s, and we present in Figs. 3 and 4 examples of the mean

secondary flow streamline patterns.

Figs. 2 and 3 represent snapshots from the evolution in time of the axial field of a real fluid in straight

tubes of very approximately square cross-section, in the case of large amplitude forcing. Fig. 2 shows the

isovels for a very approximately square ðn ¼ 4; e1 ¼ 0:22Þ cross-section for different values of the power
index j at different times during a period. When the index is zero the flow is Newtonian. Figs. 2a and 3a

represent this linear case at particular times during the evolution of the field in a period. In the remaining

figures as the value of the power index j increases the loss and storage moduli xg0 and xg00 decrease and

increase, respectively, at fixed frequency, that is the apparent viscosity decreases and the elastic effects

increase. Maximum velocities in the positive z direction are much larger than those in the negative direction,

thus there is a net flow in the positive direction equal to the Newtonian flow rate under the same pulsating

gradient. That is because the time-averaged velocity profile over a period of the linearly viscoelastic fluid

is the same as that of the Newtonian fluid with the same zero-shear viscosity.
Dimensionless mean secondary flow streamline plots in a square tube ðn ¼ 4; e1 ¼ 0:22Þ when the amplitude k of the oscillation

pressure gradient is of the same order of magnitude as the mean gradient P , k=P ¼ 1, and for increasingly elastic liquids. The

d definitions are the same as in Fig. 1. Particles move towards the corners along the walls. jDWmj ¼ 0:1� jWmjmax: (a) j ¼ 0:01,

x ¼ 1:29� 10�8; (b) j ¼ 0:5, jWmjmax ¼ 2:3� 10�4; (c) j ¼ 1:0, jWmjmax ¼ 4:4� 10�4.
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The Womersley number which represents the ratio of the inertial forces to viscous forces in oscillatory

flows is defined as
Fig. 5.

contin

jWmjma
W0 ¼
ffiffiffiffiffiffiffi
qx
l

r
R:
The Deborah number is the inverse of the ratio of the characteristic process time to the natural time (the

largest relaxation time) of the fluid,
De ¼ h
t0
and the Weissenberg number which governs the magnitude of the elastic reaction of the fluid under the

particular process conditions is framed as
We ¼ hj;
where j denotes a representative shear rate of the process.

With Newtonian fluids, in the case of large Womersley numbers, inertial forces are particularly domi-

nant close to the wall where the velocity gradient shows large fluctuations with r at any given time during a

period, and close to the centerline the velocity profile would look more like that of the plug flow. By

contrast, for small and moderate Womersley numbers, viscous forces dominate and velocity gradient

fluctuations close to the wall are completely smoothed out. In the cases presented in this paper the W0

number is small and the fluid behaves very much like a linear fluid. When the De number is smaller than
unity the process time, that is the period, is longer than the natural relaxation time of the fluid and the

particle at a fixed location has time to react. The magnitude of this reaction depends on the We number.

Thus for De < 1 and x moderate the fluid reacts quite differently depending on the value of the We number.

For small amplitude oscillations We is about forty times smaller than for large amplitude oscillations. In the

latter case the velocity profiles may present maxima and inflexion points at a fixed time in a period, where as

in the former the velocity shows a smooth increase from the wall to the centerline at all times in a period

with small departures from Newtonian behavior.

Figs. 4 and 5 represent the secondary flow structure in a square cross-section at increasing values of the
power index j and snapshots of the development of the secondary flows as the circular cross-section is

continuously deformed to yield the square shape, respectively. We note that the strength of the secondary

flow increases by more than three orders of magnitude as the linear elasticity of the fluid increases from
Snapshots of the evolution of the mean secondary flow field at various values of e1 and fixed j ¼ 0:5 as the circular tube is

uously deformed by varying e1 to culminate in the square tube ðn ¼ 4; e1 ¼ 0:22Þ. jDWmj ¼ 0:1� jWmjmax: (a) n ¼ 4, e1 ¼ 0:044,

x ¼ 6:1� 10�7; (b) n ¼ 4, e1 ¼ 0:176, jWmjmax ¼ 1:8� 10�5; (c) n ¼ 4, e1 ¼ 0:22, jWmjmax ¼ 2:3� 10�4.



Fig. 6. Dimensionless axial velocity contours in a straight pipe of very approximately triangular cross-sectional shape: (a) j ¼ 0:0,

t� ¼ 0:25p; (b) j ¼ 0:5, t� ¼ 1:907p; (c) characteristic dimensionless mean secondary flow streamline plots.

Fig. 7. Dimensionless axial velocity contours in a straight pipe of very approximately hexagonal cross-sectional shape: (a) j ¼ 0:0,

t� ¼ 0:48p; (b) j ¼ 1:0, t� ¼ 0:455p; (c) characteristic dimensionless mean secondary flow streamline plots.
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almost Newtonian ðj � 0Þ to j ¼ 1. This is a natural trend coming from the structure of the relaxation
modulus G.

The number of vortices in a cross-section is always twice the number of the straight sides of the contour.

The latter is equal to the parameter n in the shape factor. The vortices are symmetrical with respect to all

the symmetry lines that can be drawn in any given cross-sectional shape. The order of magnitude of the

strength of the secondary flows can be determined from dimensional analysis considerations as shown by

Pipkin (1965). The strength of the secondary flow in terms of the transverse velocity is of the order We3

compared to the longitudinal velocity.

In Figs. 6 and 7 we further show corresponding results of longitudinal and transversal fields descriptions
for triangular and hexagonal shapes.
4. Conclusion

Longitudinal and transversal flow field of Green–Rivlin fluids in straight tubes of arbitrary cross-sec-

tions have been determined for the case of a pulsating pressure gradient. Results show consistent flow

patterns for a variety of shapes, and for different values of the relevant fluid, and flow parameters.

Many relevant results, mainly of a kinematic nature, come out from the structure of (18), in which the
shape factor Hðr; hÞ can be conveniently specified, through parameters e1, and n so that it describes a wide
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arrange of cross-sectional shapes. The parameter e1 is intrinsically small, its maximum allowable value

decreasing as n increases. These conditions are replicated in like analysis of other viscoelastic fluids, such as

those described by the Phan-Thien–Tanner model, especially for steady flow in non-circular pipes. In such

cases, a transversal stream function of similar structure to (18) can be found (Letelier et al., 2001), in which
parameters e1 and n play the same role as in (18).

Previous comments allow us to state that the kinematic structure of secondary flows, as shown in Figs. 4,

6 and 7 are common to some viscoelastic flows. This statement is further backed by numerical results found

by Xue et al. (1995) in their study of secondary flows of Phan-Thien–Tanner fluids in rectangular pipes. The

strength of these flows is however, dependent on the values of the physical parameters associated to each

constitutive fluid model.
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