INTERNATIONAL JOURNAL OF

SOLIDS and
STRUCTURES

www.elsevier.com/locate/ijsolstr

PERGAMON International Journal of Solids and Structures 40 (2003) 5081-5095

Secondary flows of viscoelastic liquids in straight tubes

Mario F. Letelier “*, Dennis A. Siginer °

& Departamento de Ingenieria Mecdnica, Universidad de Santiago de Chile, Casilla 10233, Santiago, Chile
® College of Engineering, Wichita State University, 1845 Fairmount, Wichita, KS 67260-0044, USA

Received 13 September 2002; received in revised form 30 January 2003

Abstract

The unsteady flow of the Green—Rivlin fluids in straight tubes of arbitrary cross-section driven by a pulsating
pressure gradient is investigated. The non-linear constitutive structure defined by a series of nested integrals over semi-
infinite time domains is perturbed simultaneously with the boundary of the base flow through a novel approach to
domain mapping. The dominant primary component of the flow, the longitudinal field, and the much weaker trans-
versal field arise at the first and the second orders of the analysis, respectively. The secondary field is driven by first-
order terms stemming from the linearly viscoelastic longitudinal flow at the first order. The domain mapping technique
employed yields a continuous spectrum of unconventional closed cross-sectional shapes. We present longitudinal
velocity profiles and transversal time-averaged, mean secondary flow streamline patterns for a specific fluid and for
representative cross-sectional shapes in the spectrum the triangular, square and hexagonal shapes.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The behavior of non-Newtonian liquids when subjected to a periodic forcing oscillating about a non-zero
mean in circular pipes has been the subject of numerous investigations starting with Barnes et al. (1971)
because it arises often in applications, and due to its inherent fundamental appeal as a tool to test the pre-
dictive power of constitutive equations and as a potential rheometer. Predicting the flow behavior in par-
ticular when the driving pressure gradient pulsates with large amplitudes remains a challenge. The interest in
this flow class with fluids which exhibit elasticity finds more emphasis because of the enhancement effect, that
is a net increase in the mean flow rate over that corresponding to the steady flow driven by the mean pressure
gradient of the pulsating gradient driving the quasi-unsteady flow. This net increase can be substantial de-
pending on the flow parameters as demonstrated by Barnes et al. (1971). The point should be made that
quantitative prediction of the flow enhancement with viscoelastic liquids remains elusive for the popular
differential type constitutive equations in use at this time. Single integral models with strain-rate memory type
kernels seem to predict some experimental facts better in the context of time-periodic flows. In this vein a
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nested integral series representation over semi-infinite time domains for the extra-stress functional of a fading
memory viscoelastic fluid has been introduced and used by Siginer (1991a) and Siginer and Valenzuela-
Rendén (1993) in a series of papers to study this phenomena in circular pipes with better success than dif-
ferential type and single integral constitutive equations with strain or strain-rate memory type kernels.

So far all the work done in this area is related to flow in circular pipes. In a series of papers (Letelier et al.,
2002; Siginer and Letelier, 2002), the authors studied for the first time pulsating pressure gradient driven
flow in pipes with cross-sectional shapes other than circular using the nested integral series representation
over semi-infinite time domains for the extra-stress functional. The primary longitudinal flow is studied in
depth in Letelier et al. (2002) and the secondary flow field is investigated in Siginer and Letelier (2002). It is
well known that deviations from the circular shape do not alter the null transversal field in laminar flow for
linear fluids although weak secondary flow structures have been observed in the turbulent flow of New-
tonian fluids in non-circular tubes early in the century by Nikuradse (1930). In the case of non-linear fluids
even slight deviations from circular shape give rise to secondary flows the strength of which albeit weak
increases with increasing deviations from the circular shape. Even though the magnitude of the secondary
flows does not exceed at most 5% of the magnitude of the primary longitudinal flow secondary flows have
been shown to be the dominant mechanism behind the experimentally observed heat transfer enhancement
phenomena with viscoelastic fluids in steady laminar flow (Hartnett and Kostic, 1985, 1989; Gao and
Hartnett, 1993, 1996). There is also experimental evidence that secondary flows practically do not require
an increase in the energy input to drive the flow, that is an increase of the steady pressure gradient. Heat
transfer characteristics of viscoelastic fluids in steady laminar flow in rectangular straight tubes is still very
much an open question let alone heat transfer characteristics both in steady and quasi-unsteady flow in
tubes other than rectangular such as triangular, hexagonal, etc. To our knowledge even the heat transfer
phenomena in steady laminar flow of linear fluids in tubes of cross-sectional shape other than rectangular
has not been investigated with the obvious exception of round pipes. When it comes to viscoelastic fluids
the field is almost virgin territority.

A mathematically rigorous and general theorem concerning the existence of secondary flows in straight
tubes of arbitrary cross-section was proved by Fosdick and Serrin (1973). They showed that unless the
cross-section of the tube is circular or an annulus between two concentric circles a simple fluid cannot
undergo a steady rectilinear motion in a straight tube whose cross-section is a bounded and connected set
assuming that the material functions satisfy appropriate analyticity and monotonicity conditions and that
they are not proportional for small shear rates. The conditions for steady rectilinear flow of a viscoelastic
fluid in tubes of arbitrary cross-section were also previously deduced by Oldroyd (1965). Rectilinear flow
can occur in a straight tube of arbitrary cross-section if any one of the following three conditions are met; if
the second normal stress difference is zero or both the apparent viscosity and the second normal stress
coefficient are constant or if they are proportional. In the latter case the magnitude of the departure of the
second normal stress coefficient from a constant multiple of the apparent shear viscosity determines the
strength of the secondary flow. Thus fluids which obey the upper convected Maxwell or the Oldroyd—B
models and some versions of the Phan-Thien-Tanner model will not develop secondary flows and will
display rectilinear particle pathlines when flowing in tubes of cross-section other than circular. If none of
the above conditions is met a secondary flow occurs in the transversal plane which causes the particles to
follow a spiraling path down the tube. In the case of Maxwell and Oldroyd—B constitutive structures the
second normal stress difference N,(x?) is zero. Some versions of the Phan-Thien-Tanner model produce a
constant second normal stress coefficient ¥,(k) = N,(x?)/x* and constant apparent viscosity #'(i), other
versions predict ¥,(x*) = mn'(x) where m is a coefficient of proportionality.

This paper summarizes the recent efforts of the authors to contribute to the prediction of the primary
and secondary flows of viscoelastic fluids in conduits of arbitrary shape in quasi-unsteady flow driven by a
pulsating pressure gradient. It also puts previous results (Letelier et al., 2002; Siginer and Letelier, 2002) in a
more general perspective developed through an ongoing analysis of Phan-Thien-Tanner fluids under
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comparable dynamic conditions. Some general kinematic flow structures, common to flows of fluids with
different viscoelastic constitutive equations, are presented herein (Letelier et al., 2001). Forthcoming papers
will continue this line of investigation for steady flow when the fluid is characterized by differential type
constitutive equations, in particular by Phan-Thien-Tanner type of equations, and will look at the heat
transfer issues with non-linear fluids in tubes of non-circular shape.

2. Mathematical analysis

The field equations and the boundary conditions read as

Du

pE:—VqH—V-S, V:-u=0 1in D, D:{(V,O,z):O<r<r|,0<0<2n,—oo<z<oo},

oD

u<r| ,H,Z,t) =0, u(0,0,z,1) < 0.

aD
(1)
The forcing function and the velocity field satisfy

= —&P+Asinwt), e<1, u=ue. + vey+ we, 2)
u(—e) =ule), v(—e)=v(-e), w(—e)=—-w(—e).
D is the flow domain with the arbitrarily curved boundary 0D, and ¢ and S represent the pulsating

modified pressure field and the extra-stress tensor, respectively. The integral representation of the latter on
the particle X of the fading memory fluid at the present time ¢,

S=T+¢1 =F2[GX,s)], s=t—r1,
where 1 represents the past time is based on the history G(X) of the strain on the particle and comes out

of the Fréchet expansion of the extra-stress functional F in terms of the small parameter ¢ under the
assumptions of isotropy, incompressibility and small strains,

S(X,t;6) = &S + &SP + O(&?). (3)
The remaining variables are expanded into power series in ¢ pivoted around the rest state ¢ = 0,

u(X,t;¢) = euV (X, 1) + &u@ (X, 1) + O(), (4)

$(X,156) = 60V (X, 1) + 97 (X, 1) + O(&), (5)

where n!(-)(”) refers to the nth-order partial derivative with respect to the perturbation parameter ¢ eva-
luated at ¢ = 0,

Mﬁ”z%g

The integral forms of the Fréchet stresses S are developed and given elsewhere (Siginer, 1991a,b, 1992)
up to and including third order. The first and second order Fréchet stresses read,

y”:AwG@AW@—@@, (6)

e=0

S@ = / G(s)Agz)(t —s5)ds+ / G(s)Ly(z —s)ds + // V(Sl,Sz)Agl)(l‘ - sl)Agl)(t — 57)ds dsa,
0 0 0 Jo
()
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AV (t—s)=2Du"(X,t—s)|, j=1,2,

where G(s) and y(sy,s,) refer to the shear relaxation and quadratic shear relaxation moduli, respectively,

and the first Rivlin—Ericksen kinematic tensor A; and its derivatives are defined in terms of the rate

of deformation tensor D and its derivatives with respect to ¢ evaluated at ¢ = 0,
A =Vu+vu', AV —s) = A " (x, 1 - 5), (8)
AVt —s) =20V (x,t —s)], j=1,2.

The tensor L, is a function of A%j)(t — s) and of the history integral &* of the path of the particle X (Siginer,

1991a,b),

Li(t—s5) = ¢ - VA + A'VE + (A]'VE)T, 9)

& :/ u(X, 7)dd, > (10)
t

2.1. Longitudinal field

At the first order the Stokes problem is derived using (1)-(6) and reads as,
pu)) =-ve! +v.8V vl =0, ¢V =—(P+isinwr), u| =0, u"(0,z) < co.

The first order velocity is unidirectional and is of the following form,
u =wl(r,0,1)e..

The transversal velocity components u and v are of order O(¢?). The mass conservation is identically
satisfied at this order, and the linear momentum balance (11), yields using (6) and (8),

pw, = —(P+ Jsinor) + / G(s)V2n(r, 0,1 — 5)ds at O(&),
0

12
? 190 1@ (12)

2 _ — —_— —_—
v ot ror 2 ogr’
to be solved subject to,

wl | =0, w(0,z1¢) < co.
oD(

2.2. The transversal field

The second order problem is derived through the use of (2)—(5) and (1) and is defined by

pu'? = ~V¢? +v.S?P v.u? =0 in Dy,

u? | =0, u<2)(079,z,t) < 0. (13)
oDy

Both the longitudinal and transversal fields at the first and second orders, respectively, are defined and
are to be solved in the rest state domain D, which is geometrically the same as the physical flow domain D.
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Fig. 1. Coordinate system in a straight tube of arbitrary cross-sections.

Both problems are set in the rest state domain as a mathematical requirement because the rest state as well
as the constitutive structure are perturbed through the parameter ¢ in the driving pressure gradient. The
basic system is described in Fig. 1.

2.3. Domain mapping

We further develop and use ideas due to Letelier and Leutheusser (1985) and Letelier et al. (1995), and
postulate that the structure of the primary longitudinal flow in the deformed domain D at O(¢) is given by

w = (R? — 1 + e, sinn) [ wo(r, 0,¢) + e Hy (r,0,8) + e1Hy(r, 0,1) + O(&}) |, & <1, (14)

where wy(r,0,¢) refers to the longitudinal velocity field of the base flow, that is the velocity field in
the unmapped domain D, corresponding to flow in a tube with a known contour dDy. The contour dD of
the new conduit is determined by the numerical values of the parameters (¢, 7). Large deformations of the
contour 0D, of the base flow are allowed by this mapping technique. The base flow w; in the conduit with
the selected contour 0D, is recovered as ¢ — 0, and the values of 0 < ¢; < 1, n > 1 give rise to a spectrum
of tube contours. As an example the set ¢, = 0.22, n = 4 corresponds to a square. The factored term in (14)
is set to zero to satisfy the no-slip condition. The equation thus obtained is called the shape factor and
generates a rich spectrum of shapes by varying (&, n).

As #"sinnf used in the representation (14) of the longitudinal velocity is part of the infinite set of
homogeneous solutions of the Laplace equation one could as well have used #” cos nf or r*(cos n0 + sin n0).
Therefore the representation (14) for the longitudinal velocity written in terms of sin 0 is also valid with
sin n0 replaced with cosnf or (cosnf + sinn@). It is also important to note that the parameter ¢ in (14) is
not dimensionless. Its dimension depends on the integer number » which in turn affects the dimension of the
functions H;, i = 1,2, [¢;] = L*™", [H)] = L" 3T, [Hy] = L*"7T~" where L and T represent length and time,
respectively.

2.4. Solution for the base flow wy

A tube with circular contour 9D, is selected as the base flow. We note that the constitutive structure is
perturbed through the parameter ¢ and the contour 0Dy through & when 7 is selected. Thus at O(e, ¢!), that
is in the circular tube, the problem reduces to that of solving (12) with w(!) — wy(R? —7?) subject to
(R> —r*)wy | = 0. The solution is obtained in Siginer (1991a) by the second author and will be reproduced
here, Dy
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P 2 . A 10(/11”)

_r Rel4 it A _ -1
W()(I”,f) 4,u+R2 _r2 e[ (}”)e L (}") pr |:[0(AR) :|7 15
g ipw _ipw "

fO G(S)efiwxdsi ;/I* ’

where 1* and [, represent the complex viscosity and the modified Bessel function of order zero, respectively.
The complex viscosity is the material parameter which determines the stresses that are linear in the shear
rate, and it has components 1’ and n” corresponding to the linearly viscous and elastic properties of the
liquid, respectively.

2.5. Solution for the primary longitudinal flow at the lowest order in ¢

Expanding (14) in powers of ¢ gives,

w=wo(R* —r*) + Zg{wj, wy = wor" sinn0 + (R* — r*)H,,
=
w; = H, 17" sinnf + (R* — r*)H,.

Using (12) we obtain the consecutive problems satisfied by w;,

pw;, = / G(s)Vw,(r,0,t —s)ds, j=1,...,00. (16)
0
It is worthwhile to note that each component w; is not zero on the boundary 8D, but w) | = 0 as the
no-slip boundary condition is already satisfied by the shape factor. Do

We structure the solution at order O(e, ¢;) as
wi = {[B(r)e" + B(r)e ] + Cr"} sin n0.

The solution is developed in Letelier et al. (2002) and the details will not be reproduced here.
B(r) =KI,(Ar), (A,K) € C,

where A is defined in (15) and I, represents the complex modified Bessel function of order n and the complex
constant K is computed as

K:K1+1K27

k. = R'p(R)S, (R) — (=1ps,(R)S,, (R)]
’ S (R) + 53, (R) ’

n

[ﬂ(AR) =5 (R) + iSnz (R)a

o a(r)
pj(R)*}”l_I)l}Rz_rz?

A(r) = ay + ia,
where A(r) is defined in (15). At order O(g, &?),

wy = f(r,t)r" sin”> nf + (R* — r*)Hs.
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We postulate
Wy = 321 (I") ei‘“’ + Fz] e_i‘“‘ + [Bzz (}”) ei“” + Ezz (I") e_i“”} cos 2nb

and derive the problems which define B;; and B,, through substitution in (16),

4n® @ 12
L?By =0, (L2 _L2>Bzz =0, I=_—S+-—-4
r
the solutions to which are developed in Letelier et al. (2002) and read as

Byj(r) = Kajlon(j1)(Ar), Ky €C, j=1,2.

2.6. Solution for the transversal field at the lowest order in ¢

The transversal field arises at order O(e?). The details of the derivation are developed in Siginer and
Letelier (2002) and only the summary will be given here. The driving terms at this order are both time
independent and time dependent of the type ef!, k = 1,2. Therefore, the transversal field has a time-
averaged mean part represented by a time-averaged stream function ,,(r,6) and components ¥, (r, 6)
oscillating with frequencies w and 2w and has the form,

u® = curly(r,0,t)e.,

W(r,0,0) =, (r,0) + [ (r, 0)€" + Conj.], k=1,2. "

The mathematical problem which defines the mean field ¥, (r, 0) is developed using (7), (13) and (17) and
reads as

= [ GOV Ly~ bV Ly dds+ [ [ a9 M)A,
— [PV - (A1 (s1)A1(s2))]y, },, ds1 dsa,

where {}, refers to the time-averaged terms. The tensor L; and the tensorial product A;(s;)A;(s,) are
computed using (8) and (9) and are given as

2 1
Li(t—s)=2w,(t—s)¢,e, Qe + ﬁW‘g(f —5)Epep R ey + . [w,(t—s)Eg+wo(t—s)E,][e, @ep+ep e,

1
A(11>(t — sl)A<11>(t —5) =w,(s1)w,(s2)e, R e, + ﬁWﬁ()(Sl)W,()(Sz)e() R ey

1
+ p W(s1)wo(s2)e, @ ep+w, (s2)wo(s1)es @ e,],

together with & computed through (10),

f* = éez = €.
We postulate that the mean stream function ,, is structured as
wm:HZ(he)f(rae)—i_l//m (18)

where ), is an arbitrary constant which may be set to zero for convenience and H (r, 0) is the shape factor,

H(r,0) = R — * + & /" sin nd.
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The no-slip boundary condition is met by the above definition of y,,, and the unknown function f(r, ) is
assumed to have the following form,

o0

f(r,0) = "elfi(r,0).

=1
Expanding the mean stream function ,, in a series we obtain,

U (r,0) = ey + ey, + O(e)),

U, (r, 0) = &1 (R> — )11 (r, 0) + E[(R? — ) fa(r, 0) + 2(R* — )" sin ndfi (r, 0)] + O(&}).
Then the secondary flow is defined at the leading orders in & by

O(&,61) : 1V, = rV*(R: = )i (r, 0)],

O(2,8)) : V4, = rVA(R? — ) fa(r, 0) + 2(R* — #2)r" sin nffy(r, 0)].

The full solution of the last two problems are given in Siginer and Letelier (2002) and the reader is
referred to that work for details.

3. Discussion

Explicit computation of the longitudinal and transversal flow fields at the lowest orders using the
equations developed depends on defining the material functions entering the field equations. The primary
field in the longitudinal direction is framed in terms of the shear relaxation modulus G(s) related to the
complex viscosity #*

’7* — 11/ _ il’]// _ / G(S) e—iws ds.
0

We use an expression for G(s) previously introduced by Siginer (1991a,b)
k* ,
G(s) = st lem o= 0<k<l,
0"T (k) u
where o an u are the first Rivlin—Ericksen constant—a material parameter—and the zero shear viscosity,
and 0 and k can be thought of as the natural time of the fluid and an adjustable parameter to bring the curve
represented by the above definition of G(s) for a given fluid (o; and u, consequently are fixed and deter-
mined from separate experiments for the fluid under consideration) to better agreement with experimental
data. This explicit representation of G(s) meets the conditions for the stability of the rest state, that is
G(s) >0, G'(s) <0, G"(s) > 0 and G(s) — 0 as s — oo which implies that the stress vanishes when the fluid
is at rest. The first Rivlin—Ericksen coefficient is related to the first normal stress difference through,
Tzz - Tr‘r _ . NI(KZ)

2
k—0 K2 - 0 2K2 ’ NI(K ) > 0’ (19)

o = —/ sG(s)ds = —lim
0

where 7., T,, and k represent the stress components in the longitudinal and radial directions and the shear
rate, respectively. Thus the definition of the natural time 6 of the fluid in terms of «; and a characteristic
viscosity makes sense and is physically meaningful. In Figs. 2 and 3 we present the longitudinal field for a
commercially available specific fluid and for large amplitude forcing. If the analysis is conducted up to and
including fourth order in ¢, then the present analysis is applicable to solutions of high-molecular weight
polymers such as polyacrylamide in water.
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Fig. 2. Dimensionless axial velocity contours in a straight pipe of very approximately square cross-sectional shape (n = 4, & = 0.22) in
the case of the large amplitude oscillation of the pressure gradient for increasingly elastic liquids starting with the linear Newtonian
fluid (k = 0). The amplitude 7 of the pressure wave is equal to the mean gradient P, 1/P = 1. The non-dimensional velocity w* and time
t* are defined as w* = w/W, and ¢ = wt where W, = PR? /4, and other data is taken as o = 10 rad/s, p = 0.89 g/cm?, u = 200 Poise,
o = =50 g/em, R =3 cm. In the following A defines the dimensionless increment between axial velocity contours: (a) x = 0.0,
t=0487, A=2x107% (b) k = 0.01, #* = 0.3657, A =35 x 1075, (¢) k = 0.5, = 1.907%, A= 1073, (d) k = 0.5, t* = 57/4, A =0.2;
(e) k=05, =n/4, A=0.07; (f) k = 1.0, £ = 0.4557, A = 36 x 107*.

In Fig. 3 longitudinal velocity profiles in both the shorter and longer cross-section semi-axes are shown

for times associated to Fig. la and b.
For the computation of the transversal flows an explicit definition of the quadratic shear relaxation

modulus y(s1, s7) is required in addition to the definition of the shear relaxation modulus G(s). We note that
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Fig. 3. Dimensionless velocity profiles in a square pipe (n = 4,¢ = 0.22) along the diagonal and the axis of the square in cases (a) and
(b) in Fig. 1. There is one-to-one correspondence between Figs. 1 and 2. Thus case (a) in Fig. 1 corresponds to case (a) in Fig. 2. Length
scale is R. Non-dimensional velocity is the same as in Fig. 2. The velocity profiles with the larger ordinate are obviously along the
diagonal.

the quadratic shear relaxation modulus is related to both the first and second normal stress differences
N;(x?) and N,(k?), respectively, through the second Rivlin-Ericksen constant o,

00 00 2 2
/ / 7(s1,52)dsy dss = —a = lim M,
0 J0

im S M) = T T

(20)

The relationships (19) and (20) hold independently of the explicit representations adopted for G(s) and
p(s1,52). In addition to these two material functions the driving terms in the field equations for the sec-
ondary flow depend on d,(w) the counterpart of o, for oscillatory motions,

6(2(60) = / / V(S],Sz) COS(U(S],Sz)dS1 dSz.
0 Jo
The second normal stress difference for oscillatory flows is given by

My(w) = —n"(w) /o + 82(w).
This expression collapses on to the second normal stress function N, (x?) for viscometric flows as @ — 0.

.o . Ny (K2
lim M, (w) = lim 2(’; ) =20 + .
w—0 xk—0 K

lim &2(0)) = 0o,

w—0
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We adopt an expression previously used by Siginer (1991a,b), for y(sy,s2)

N N
’))(Sl,Sz) = O(zzclil?eili(slfvﬂ, ZC}[ = 1, (21)
which represents y(si,s,) as a series in terms of the second Rivlin—Ericksen constant o, > 0 and a discrete
spectrum of relaxation times /7', i = 1,...,N. This choice for the representation of y(s;,s,) satisfies (20).
We compute,
Yo (B o)
& (w) = 2a C,lP—L——=.
2( ) 2; 1"’(ljz-+w2)

It has been determined experimentally that, for the same commercially available fluid whose properties
we use in this paper to obtain specific examples of the longitudinal velocity profiles and mean transversal
streamline patterns, in small amplitude oscillatory rod climbing experiments a good fit with experimental
data is obtained when w < 20 rad/s if N =2 and

1, =38079s!, I,=17.5214 s,

1 =09735, ¢, =1-0.935.

We adopt the hypothesis that (21) represents the behavior of this specific fluid in all periodic motions
which perturb the rest state when @ < 20 rad/s, and we present in Figs. 3 and 4 examples of the mean
secondary flow streamline patterns.

Figs. 2 and 3 represent snapshots from the evolution in time of the axial field of a real fluid in straight
tubes of very approximately square cross-section, in the case of large amplitude forcing. Fig. 2 shows the
isovels for a very approximately square (n = 4, & = 0.22) cross-section for different values of the power
index « at different times during a period. When the index is zero the flow is Newtonian. Figs. 2a and 3a
represent this linear case at particular times during the evolution of the field in a period. In the remaining
figures as the value of the power index k increases the loss and storage moduli wy’ and wn” decrease and
increase, respectively, at fixed frequency, that is the apparent viscosity decreases and the elastic effects
increase. Maximum velocities in the positive z direction are much larger than those in the negative direction,
thus there is a net flow in the positive direction equal to the Newtonian flow rate under the same pulsating
gradient. That is because the time-averaged velocity profile over a period of the linearly viscoelastic fluid
is the same as that of the Newtonian fluid with the same zero-shear viscosity.

Fig. 4. Dimensionless mean secondary flow streamline plots in a square tube (n = 4,¢, = 0.22) when the amplitude 2 of the oscillation
of the pressure gradient is of the same order of magnitude as the mean gradient P, /P = 1, and for increasingly elastic liquids. The
data and definitions are the same as in Fig. 1. Particles move towards the corners along the walls. [A¥,,| = 0.1 x [¥,,],...: (@) K = 0.01,
[Pl = 129 X 1078; (b) £ = 0.5, |¥o] e = 23 X 1074 (¢) 5 = 1.0, | ¥, | ., = 4.4 x 1074,

max max max
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The Womersley number which represents the ratio of the inertial forces to viscous forces in oscillatory
flows is defined as

W = [P2R.
u

The Deborah number is the inverse of the ratio of the characteristic process time to the natural time (the
largest relaxation time) of the fluid,

0
De = —
)
and the Weissenberg number which governs the magnitude of the elastic reaction of the fluid under the
particular process conditions is framed as

We = 0Ok,

where k denotes a representative shear rate of the process.

With Newtonian fluids, in the case of large Womersley numbers, inertial forces are particularly domi-
nant close to the wall where the velocity gradient shows large fluctuations with » at any given time during a
period, and close to the centerline the velocity profile would look more like that of the plug flow. By
contrast, for small and moderate Womersley numbers, viscous forces dominate and velocity gradient
fluctuations close to the wall are completely smoothed out. In the cases presented in this paper the W
number is small and the fluid behaves very much like a linear fluid. When the De number is smaller than
unity the process time, that is the period, is longer than the natural relaxation time of the fluid and the
particle at a fixed location has time to react. The magnitude of this reaction depends on the We number.
Thus for De < 1 and w moderate the fluid reacts quite differently depending on the value of the We number.
For small amplitude oscillations We is about forty times smaller than for large amplitude oscillations. In the
latter case the velocity profiles may present maxima and inflexion points at a fixed time in a period, where as
in the former the velocity shows a smooth increase from the wall to the centerline at all times in a period
with small departures from Newtonian behavior.

Figs. 4 and 5 represent the secondary flow structure in a square cross-section at increasing values of the
power index x and snapshots of the development of the secondary flows as the circular cross-section is
continuously deformed to yield the square shape, respectively. We note that the strength of the secondary
flow increases by more than three orders of magnitude as the linear elasticity of the fluid increases from

Fig. 5. Snapshots of the evolution of the mean secondary flow field at various values of ¢ and fixed x = 0.5 as the circular tube is
continuously deformed by varying ¢ to culminate in the square tube (n = 4,¢ = 0.22). |AP,,| = 0.1 X |V, (@) n =4, & = 0.044,

Wl = 6.1 10775 (b) =4, &) = 0.176, |¥,,|,.. = 1.8 x 1075 () n =4, & = 0.22, |V, [, = 2.3 x 1074,
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Fig. 6. Dimensionless axial velocity contours in a straight pipe of very approximately triangular cross-sectional shape: (a) k = 0.0,
t* = 0.257; (b) k= 0.5, t* = 1.9077; (c) characteristic dimensionless mean secondary flow streamline plots.

Fig. 7. Dimensionless axial velocity contours in a straight pipe of very approximately hexagonal cross-sectional shape: (a) k = 0.0,
t* = 0.487; (b) k = 1.0, t* = 0.4557; (c) characteristic dimensionless mean secondary flow streamline plots.

almost Newtonian (x ~ 0) to k = 1. This is a natural trend coming from the structure of the relaxation
modulus G.

The number of vortices in a cross-section is always twice the number of the straight sides of the contour.
The latter is equal to the parameter n in the shape factor. The vortices are symmetrical with respect to all
the symmetry lines that can be drawn in any given cross-sectional shape. The order of magnitude of the
strength of the secondary flows can be determined from dimensional analysis considerations as shown by
Pipkin (1965). The strength of the secondary flow in terms of the transverse velocity is of the order e’
compared to the longitudinal velocity.

In Figs. 6 and 7 we further show corresponding results of longitudinal and transversal fields descriptions
for triangular and hexagonal shapes.

4. Conclusion

Longitudinal and transversal flow field of Green—Rivlin fluids in straight tubes of arbitrary cross-sec-
tions have been determined for the case of a pulsating pressure gradient. Results show consistent flow
patterns for a variety of shapes, and for different values of the relevant fluid, and flow parameters.

Many relevant results, mainly of a kinematic nature, come out from the structure of (18), in which the
shape factor H(r,6) can be conveniently specified, through parameters ¢;, and » so that it describes a wide
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arrange of cross-sectional shapes. The parameter ¢; is intrinsically small, its maximum allowable value
decreasing as n increases. These conditions are replicated in like analysis of other viscoelastic fluids, such as
those described by the Phan-Thien—Tanner model, especially for steady flow in non-circular pipes. In such
cases, a transversal stream function of similar structure to (18) can be found (Letelier et al., 2001), in which
parameters ¢; and n play the same role as in (18).

Previous comments allow us to state that the kinematic structure of secondary flows, as shown in Figs. 4,
6 and 7 are common to some viscoelastic flows. This statement is further backed by numerical results found
by Xue et al. (1995) in their study of secondary flows of Phan-Thien-Tanner fluids in rectangular pipes. The
strength of these flows is however, dependent on the values of the physical parameters associated to each
constitutive fluid model.
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